Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Environ Int ; 175: 107941, 2023 05.
Article in English | MEDLINE | ID: covidwho-2311831

ABSTRACT

With the Chinese government revising ambient air quality standards and strengthening the monitoring and management of pollutants such as PM2.5, the concentrations of air pollutants in China have gradually decreased in recent years. Meanwhile, the strong control measures taken by the Chinese government in the face of COVID-19 in 2020 have an extremely profound impact on the reduction of pollutants in China. Therefore, investigations of pollutant concentration changes in China before and after COVID-19 outbreak are very necessary and concerning, but the number of monitoring stations is very limited, making it difficult to conduct a high spatial density investigation. In this study, we construct a modern deep learning model based on multi-source data, which includes remotely sensed AOD data products, other reanalysis element data, and ground monitoring station data. Combining satellite remote sensing techniques, we finally realize a high spital density PM2.5 concentration change investigation method, and analyze the seasonal and annual, the spatial and temporal characteristics of PM2.5 concentrations in Mid-Eastern China from 2016 to 2021 and the impact of epidemic closure and control measures on regional and provincial PM2.5 concentrations. We find that PM2.5 concentrations in Mid-Eastern China during these years is mainly characterized by "north-south superiority and central inferiority", seasonal differences are evident, with the highest in winter, the second highest in autumn and the lowest in summer, and a gradual decrease in overall concentration during the year. According to our experimental results, the annual average PM2.5 concentration decreases by 3.07 % in 2020, and decreases by 24.53 % during the shutdown period, which is probably caused by China's epidemic control measures. At the same time, some provinces with a large share of secondary industry see PM2.5 concentrations drop by more than 30 %. By 2021, PM2.5 concentrations rebound slightly, rising by 10 % in most provinces.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Particulate Matter/analysis , Environmental Monitoring/methods , COVID-19/epidemiology , Air Pollutants/analysis , Air Pollution/analysis , China/epidemiology , Disease Outbreaks
2.
Sustainability (Switzerland) ; 15(5), 2023.
Article in English | Scopus | ID: covidwho-2272630

ABSTRACT

Travellers may be exposed to a wide range of different air pollutants during their journeys. In this study, personal exposures within vehicles and during active travel were tested in real-world conditions across nine different transport modes on journeys from London Paddington to Oxford City Centre, in the United Kingdom. The modes tested covered cycling, walking, buses, coaches, trains and private cars. Such exposures are relevant to questions of traveller comfort and safety in the context of airborne diseases such as COVID-19 and a growing awareness of the health, safety and productivity effects of interior air quality. Pollutants measured were particle number (PN), particle mass (PM), carbon dioxide (CO2) and speciated volatile organic compounds (VOCs), using devices carried on or with the traveller, with pumped sampling. Whilst only a relatively small number of journeys were assessed—inviting future work to assess their statistical significance—the current study highlights where a particular focus on exposure reduction should be placed. Real-time results showed that exposures were dominated by short-term spikes in ambient concentrations, such as when standing on a train platform, or at the roadside. The size distribution of particles varied significantly according to the situation. On average, the coach created the highest exposures overall;trains had mixed performance, while private cars and active transport typically had the lowest exposures. Sources of pollutants included both combustion products entering the vehicle and personal care products from other passengers, which were judged from desk research on the most likely source of each individual compound. Although more exposed to exhaust emissions while walking or cycling, the active traveller had the benefit of rapid dilution of these pollutants in the open air. An important variable in determining total exposure was the journey length, where the speed of the private car was advantageous compared to the relative slowness of the coach. © 2023 by the authors.

3.
J Environ Health Sci Eng ; 20(1): 395-403, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1827384

ABSTRACT

Purpuse: The COVID-19 outbreak has escalated into the worse pandemic of the present century. The fast spread of the new SARS-CoV-2 coronavirus has caused devastating health and economic crises all over the world, with Spain being one of the worst affected countries in terms of confirmed COVID-19 cases and deaths per inhabitant. In this situation, the Spanish Government declared the lockdown of the country. Methods: The variations of air pollution in terms of fine particulate matter (PM2.5) levels in seven representative cities of Spain are analyzed here considering the effect of meteorology during the national lockdown. The possible associations of PM2.5 pollution and climate with COVID-19 accumulated cases were also analyzed. Results: While the epidemic curve was flattened, the results of the analysis show that the 4-week Spanish lockdown significantly reduced the PM2.5 levels in only one city despite the drastically reduced human activity. Furthermore, no associations between either PM2.5 exposure or environmental conditions and COVID-19 transmission were found during the early spread of the pandemic. Conclusions: A longer period applying human activity restrictions is necessary in order to achieve significant reductions of PM2.5 levels in all the analyzed cities. No effect of PM2.5 pollution or weather on COVID-19 incidence was found for these pollutant levels and period of time. Supplementary Information: The online version contains supplementary material available at 10.1007/s40201-022-00786-2.

4.
Environ Pollut ; 306: 119347, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1804058

ABSTRACT

Intra-urban pollution monitoring requires fine particulate (PM2.5) concentration mapping at ultrahigh-resolution (dozens to hundreds of meters). However, current PM2.5 concentration estimation, which is mainly based on aerosol optical depth (AOD) and meteorological data, usually had a low spatial resolution (kilometers) and severe spatial missing problem, cannot be applied to intra-urban pollution monitoring. To solve these problems, top-of-atmosphere reflectance (TOAR), which contains both the information about land and atmosphere and has high resolution and large spatial coverage, may be efficiently used for PM2.5 estimation. This study aims to systematically evaluate the feasibility of retrieving ultrahigh-resolution PM2.5 concentration at a large scale (national level) from TOAR. Firstly, we make a detailed discussion about several important but unsolved theoretic problems on TOAR-based PM2.5 retrieval, including the band selection, scale effect, cloud impact, and mapping quality evaluation. Secondly, four types and eight retrieval models are compared in terms of quantitative accuracy, mapping quality, model generalization, and model efficiency, with the pros and cons of each type summarized. Deep neural network (DNN) model shows the highest retrieval accuracy, and linear models were the best in efficiency and generalization. As a compromise, ensemble learning shows the best overall performance. Thirdly, using the highly accurate DNN model (cross-validated R2 equals 0.93) and through combining Landsat 8 and Sentinel 2 images, a 90 m and ∼4-day resolution PM2.5 product was generated. The retrieved maps were used for analyzing the fine-scale interannual pollution change inner the city and the pollution variations during novel coronavirus disease 2019 (COVID-19). Results of this study proves that ultrahigh resolution can bring new findings of intra-urban pollution change, which cannot be observed at previous coarse resolution. Lastly, some suggestions for future ultrahigh-resolution PM2.5 mapping research were given.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Atmosphere , Environmental Monitoring/methods , Humans , Machine Learning , Particulate Matter/analysis
5.
J Environ Sci (China) ; 115: 443-452, 2022 May.
Article in English | MEDLINE | ID: covidwho-1599196

ABSTRACT

The COVID-19 pandemic has raised awareness about various environmental issues, including PM2.5 pollution. Here, PM2.5 pollution during the COVID-19 lockdown was traced and analyzed to clarify the sources and factors influencing PM2.5 in Guangzhou, with an emphasis on heavy pollution. The lockdown led to large reductions in industrial and traffic emissions, which significantly reduced PM2.5 concentrations in Guangzhou. Interestingly, the trend of PM2.5 concentrations was not consistent with traffic and industrial emissions, as minimum concentrations were observed in the fourth period (3/01-3/31, 22.45 µg/m3) of the lockdown. However, the concentrations of other gaseous pollutants, e.g., SO2, NO2 and CO, were correlated with industrial and traffic emissions, and the lowest values were noticed in the second period (1/24-2/03) of the lockdown. Meteorological correlation analysis revealed that the decreased PM2.5 concentrations during COVID-19 can be mainly attributed to decreased industrial and traffic emissions rather than meteorological conditions. When meteorological factors were included in the PM2.5 composition and backward trajectory analyses, we found that long-distance transportation and secondary pollution offset the reduction of primary emissions in the second and third stages of the pandemic. Notably, industrial PM2.5 emissions from western, southern and southeastern Guangzhou play an important role in the formation of heavy pollution events. Our results not only verify the importance of controlling traffic and industrial emissions, but also provide targets for further improvements in PM2.5 pollution.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , China/epidemiology , Communicable Disease Control , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , SARS-CoV-2
6.
Geophys Res Lett ; 48(8): e2021GL092395, 2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1298812

ABSTRACT

Intensive observations and WRF-Chem simulations are applied in this study to investigate the adverse impacts of regional transport on the PM2.5 (fine particulate matter; diameter ≤2.5 µm) changes in Shanghai during the Coronavirus Disease 2019 lockdown. As the local atmospheric oxidation capacity was observed to be generally weakened, strong regional transport carried by the frequent westerly winds is suggested to be the main driver of the unexpected pollution episodes, increasing the input of both primary and secondary aerosols. Contributing 40%-80% to the PM2.5, the transport contributed aerosols are simulated to exhibit less decreases (13.2%-21.8%) than the local particles (37.1%-64.8%) in urban Shanghai due to the lockdown, which largely results from the less decreased industrial and residential emissions in surrounding provinces. To reduce the influence of the transport, synergetic emission control, especially synergetic ammonia control, measures are proved to be effective strategies, which need to be considered in future regulations.

7.
Sci Total Environ ; 754: 142227, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-747997

ABSTRACT

Compared with the 21-year climatological mean over the same period during 2000-2020, the aerosol optical depth (AOD) and Angstrom exponent (AE) during the COVID-19 lockdown (January 24-February 29, 2020) decreased and increased, respectively, in most regions of Central-Eastern China (CEC). The AOD (AE) values decreased (increased) by 39.2% (29.4%) and 31.0% (45.3%) in Hubei and Wuhan, respectively, because of the rigorous restrictions. These inverse changes reflected the reduction of total aerosols in the air and the contribution of the increase in fine-mode particles during the lockdown. The surface PM2.5 had a distinct spatial distribution over CEC during the lockdown, with high concentrations in North China and East China. In particular, relatively high PM2.5 concentrations were notable in the lower flatlands of Hubei Province in Central China, where six PM2.5 pollution events were identified during the lockdown. Using the observation data and model simulations, we found that 50% of the pollution episodes were associated with the long-range transport of air pollutants from upstream CEC source regions, which then converged in the downstream Hubei receptor region. However, local pollution was dominant for the remaining episodes because of stagnant meteorological conditions. The long-range transport of air pollutants substantially contributed to PM2.5 pollution in Hubei, reflecting the exceptional importance of meteorology in regional air quality in China.


Subject(s)
Air Pollutants , Air Pollution , Coronavirus Infections , Pandemics , Pneumonia, Viral , Air Pollutants/analysis , Air Pollution/analysis , Betacoronavirus , COVID-19 , China , Cities , Environmental Monitoring , Humans , Meteorology , Particulate Matter/analysis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL